AN EXAMINATION OF ETHEREUM PLATFORM IN THE IMPLEMENTATION OF
UNIVERSAL BUSINESS LANGUAGE USE CASES

by

Ramkumar Velmurugan

Submitted in partial fulfilment of the
requirements for the degree of
Master of Applied Computer Science

at
Dalhousie University

Halifax, Nova Scotia
July 2016

© Copyright by Ramkumar Velmurugan, 2016

DALHOUSIE UNIVERSITY
FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of
Graduate Studies for acceptance a project work entitled “An Examination of Ethereum
platform in the implementation of Universal Business Language use cases”” by Ramkumar
Velmurugan in partial fulfilment of the requirements for the degree of Master of Applied
Computer Science.

Dated: 9-Aug-2016

Supervisor:

Dr. Peter Bodorik

Reader:

Dr. Meng He

DALHOUSIE UNIVERSITY

DATE:

AUTHOR: Ramkumar Velmurugan

TITLE: An Examination of Ethereum platform in the implementation of Universal
Business Language use cases

DEPARTMENT: Faculty of Computer Science

DEGREE: Master of Applied Computer Science

CONVOCATION: October 2016

Permission is herewith granted to Dalhousie University to circulate and to have copied for
non-commercial purposes, at its discretion, the above title upon the request of individuals
or institutions. | understand that my project work will be electronically available to the
public.

The author reserves other publication rights, and neither this work nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.
The author attests that permission has been obtained for the use of any copyrighted material
appearing in the project work (other than the brief excerpts requiring only proper

acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

Table of Contents

AABSTRACT .ttt ettt skttt s et et e st e b et e bt e bt bt e Rt e s e e s b e b e bbb e e b e e £t e Rt e R e Rt e e e b bbb e b b n e ne e Vi
ACKNOWIBAGEMENTS ...ttt ens vii
(@ gF=To] (=1 gl M 1) € oo [F 11 o] o 1SR 1
1.1 MOtivation and PUIPOSE......ceeiuiiieiieitecieseeste e staesre e e steeste e sreesaeaseesraesteaneesreenseeneenns 1
1.2 RESEAICH OBJECTIVE.......iitiiiiiiiciiieee bbb 3
IR T O 101 1 [T - USSP P PP PRPR 4
Chapter 2 — BaCKgrOUNGcc.ooiiiiicece ettt st e s be e be e e sraesneenee e 5
2.1 Ethereum — High Level DeSCription ..o 5
2.2 Decentralized APPHCALIONc.ccoviiieieiie et re e 6
0 T =1 1 T OSSP TP 7
2.4 MiINING AIGOFTERM ..o e 8
2.5 SMAIT CONTIACTSeiiiiieiieiie ettt e bt e eesbe e s b e e s rneenne e 10
2.6 Ethereum TranSaCtion ..ot 11
2.7 Ethereum State Transition FUNCHION...........cooiiiiiie e 12
P28 T =1 (o1t SV =11 T =1 4 o] o ISP 13
e I Y (=] g] I o U o = SO 14
2.10 Universal BUSINESS LANQUAGE.coeiuirierieriiiiieieeieieie sttt 14
Chapter 3 - Software Implementation 0f UBL USE CASES.......cccecvuereererirrieresieseeseeseeseeeeens 16
T8 B TN T | T o U (=] o o [PPSR 16
3.2 Manual Contract DEPIOYMENTcoiiiiiiieieeiee s 19
3.3 Contract Development and Deployment with Frameworks.............ccccooeveniiinenne. 20
3.4 Overview of UBL use cases Of the Project..........cccoveiveiiiicie i 22
I R =T g Lo (=]] o RSSO PR PP PRPR 22
Bih.2 CALAIOG: ... ettt 26
N @ 10 1o -1 o] o LT OO RRO PSRRI 27
I @] 0 (=1 ¢ oo RSSO PRSI 28
BAD BIIING: o 30

KI8T 1 11 01 0= T o PR PR 31
Chapter 4 - Performance and Scalabilityccooooiiiiiiii 32
4.1 Performance ParametersS...... ..o ieiieieiie ettt ae e ae e e nneenee e 32
A.1.1 HASNTALE....eeeeee et 32

4.1.2 Difficulty Threshold...........ooo o 32

G B o o1 (o 1= SRS 33

4.2 Transactions Per SECONMcccciiieiieiecie sttt nee e 34
G Tox= 1 - o] |1 7SR 36
B - e] 1 0 (o1 L0 | TSR PPR PR 38
R VY (01 =3 I T <o 4 o] o ISR 39
Chapter 5 - CONCIUSIONoiuiiiiiii bbb 41
T U1 (0] €TV o S 42
=] (= =] (oSSR 43

ABSTRACT

Ethereum is a platform that is based on the blockchain technology. The Ethereum system allows
running specific scripts called smart contracts that can be programmed to perform the
computational task to be executed in the blockchain. The running of specific scripts provides a
framework that can be used to develop decentralized applications. In this work, we examine the
suitability of using the Ethereum platform for implementation of the Universal Business Language
use cases developed by OASIS, which is a nonprofit consortium that drives the development,
convergence and adoption of open standards for the global information society. We selected a
small collection of use cases, for implementation with Ethereum, while ensuring that our selection
includes one of the most sophisticated/complex use cases. Along with the implemented use cases,
we examine the performance of the Ethereum by analyzing the parameters that affect it. We also
examine issues related to the scalability of the Ethereum platform and analyze the architecture. We
review the solutions that are being proposed for overcoming the issues related to the scalability

and performance of the Ethereum platform.

Vi

Acknowledgements

My Supervisor, Dr. Peter Bodorik, deserves the most praise for his invaluable guidance,
friendship and suggestions. | would also like to thank Dr. Dawn Jutla for her helpful suggestions
and support. Lastly, | thank all of the friends and acquaintances | have made at Dalhousie
University. They have made this journey something to remember. This journey has taught me

humility.

vii

Chapter 1 - Introduction

1.1 Motivation and purpose

Ethereum is a platform that runs smart contracts that are built on top of the blockchain
technology. The application that is built with the Ethereum runs in such a way that it does not have
any possible downtime, fraud, censorship or third party interference ("Ethereum Project,” n.d.).
Ethereum runs on a custom built blockchain which is a global infrastructure and is powerful when
compared to its predecessor, Bitcoin. Ethereum infrastructure enables the developers to create a
custom decentralized application that can be built on top of the Ethereum platform ("Ethereum
Project,” n.d.).

Presently, on a traditional client-server architecture, application code is written and
deployed on the server and a special client application is written to interact with the server. In the
client-server model if a server goes down many users are affected. In Ethereum, anyone can set up
a node and access the application that has been deployed in it, thus making the application that is
deployed in the Ethereum completely decentralized ("Ethereum Project,” n.d.).

Like Bitcoin, Ethereum cannot be controlled by anyone in the world. The project is
completely open source and there is no sole owner for Ethereum. In a narrow sense, Ethereum
provides a platform to develop and deploy decentralized applications. The central concept of the
Ethereum is to provide a blockchain with a built in Turing-complete programming language
allowing users to write smart contracts into the block chain ("Ethereum Project,” n.d.). Turing
complete programming language is defined as the programming language that has the capacity to

simulate a single taped turing machine.

Ethereum as a platform does not provide any special features. It is up to the developers and
the programmers to develop the smart contracts and applications that use the infrastructure of the
Ethereum.

Ethereum is suited for applications that automate direct interaction between the peers or
coordinate a group of actions in a group. In theory, Ethereum provides a simple set of instructions
to be run automatically when a set of conditions are met. Apart from building decentralized
application and deploying smart contracts, Ethereum provides an environment where trust,
security, and performance are very important (Mougayar, W. 2015).

Ethereum currently has three crowdfunded projects that are successful in the market. The
DAO (Decentralized Autonomous Organization) is a project that creates autonomous organization
using the Ethereum platform. The project is currently funded with a hundred million dollars. DAO
provides a new decentralized model for organizing both commercial and non-profit enterprises
(“DAO (organization) - Wikipedia, the free encyclopedia,” n.d.). DigixDAO Crowdsale provides
a separate set of tokens called DGD, which is equivalent to the gold standards token of the
Ethereum platform. The DigixDAO has raised more than five million dollars from the investors
(“List of highest funded crowdfunding projects - Wikipedia, the free encyclopedia,” n.d.). Augur
is a decentralized market prediction software built using Ethereum. The software has collective
intelligence to make predictions. Thus, using the block chain functionality generates better
forecasts about the future events (“Decentralized Prediction Markets | Augur Project,” n.d.).

The rest of this introductory chapter is dedicated to presenting the research question and a

project outline.

1.2 Research Objective

In the world of business, several standards are set up for business documents. One such
standard is the Universal Business Language (UBL), which are the standard business XML
document supporting the digitization of the commercial and logistical processes for domestic and
international supply chains, such as procurement, purchasing, transport and other supply chain
management functions (“Ethereum Project,” n.d.). In this project, we will convert real world use
cases of the UBL to the Ethereum platform to test the suitability of the Ethereum for representation
and implementation of UBL.

In the implementation of the business use cases, we are analyzing the Tendering,
Catalogue, Quotation, Ordering, and Billing. Based on the use cases, specific smart contracts are
written and deployed on the Ethereum platform. The Ethereum platform provides a simple set of
instructions that can be carried out when a condition is met. Based on the developed smart contract,
a decentralized application is developed with the help of standard web scripting languages.

Our project has two objectives:

1. Examine the suitability of deployment of business logic expressed in UBL in Ethereum.
For the purpose we selected a small subset of the use case from reference, ensuring that
our selected set has one of the most sophisticated and complex cases.

2. Explore the performance and scalability of the Ethereum platform along with the

parameters that affect it.

1.3 Outline

This report is organized as follows. Chapter 2 provides background information about the
decentralized application, the concept of mining, smart contracts, and the UBL. Chapter 3 explains
the implementation of the selected UBL use cases, design patterns used in designing the smart
contracts and the development framework used in the project. Chapter 4 examines the Ethereum
performance and scalability. Chapter 5 describes the conclusion and the future work of Ethereum.

It should be noted that the smart contracts developed for this project were deployed and
tested in the private test network. The application did not make any connection with the live block
chain. In the project, personal or identifying data were not collected and thus no ethical issues

arose during the work in the project.

Chapter 2 — Background

In this chapter, we will review background information related to Ethereum and t0 tegh
Universal Business Language. Applications and services are developed day-to-day using web
technologies in the normal client-server model to satisfy the business requirements. But building
an application in a completely decentralized fashion is a very new approach for normal application
to improve massively.

(Buterin, 2016) claimed that Ethereum provides an enormously powerful shared global
infrastructure that can move value around and represent the ownership of the property and thus
enable developers to create markets and store registries of debts or promises without a middle man
or counterparty risk.

In the following, we provide relevant background information of Ethereum’s key

components that relate to our project.

2.1 Ethereum — High Level Description

Ethereum is a platform that can be used to develop and host decentralized applications. The
platform can be easily setup just by installing the geth client in the machine. Once the geth client
is setup the host machine will act as a node in the Ethereum network. The main task of the
Ethereum node is to perform the mining operation and validate transactions that are happening in
the network.

Ethereum leverages the blockchain technology to deploy and develop the decentralized
application. “A blockchain is a distributed computing architecture where every network node
executes and records the same transactions, which are grouped into blocks” (“Ethereum

homestead documentation — Ethereum homestead 0.1 documentation,” 2016).

Ethereum allows the developers to write specific scripts called the smart contract that live
on the blockchain. Ethereum also follows an incentive-driven model, all the computations done in
the blockchain needs to be paid by a cryptocurrency called Ether. Ethereum blockchain will record
all the transactions that are taken place in the network. The Ethereum blockchain will store the
recent state information and the transaction list in the blockchain. A transaction in Ethereum needs
to be approved by all the nodes before getting added into the blockchain.

“Only one block can be added at a time, and every block contains a mathematical proof
that verifies that it follows in sequence from the previous block. In this way, the blockchain’s
“distributed database” is kept in consensus across the whole network. Individual user interactions
with the ledger (transactions) are secured by strong cryptography. Nodes that maintain and verify
the network are incentivized by mathematically enforced economic incentives coded into the
protocol.” (“Ethereum homestead documentation — Ethereum homestead 0.1 documentation,”
2016).

In a nutshell, Ethereum is a programmable blockchain that lets anyone to build and use
decentralized application. Though the computation performed by the Ethereum is complex when
compared to the normal computer the platform provides extreme levels of fault tolerance, ensures
zero downtime and makes the data stored in the blockchain unchangeable and censorship-resistant.

The following subsections are designed in such a way that it will give a detailed

background information about the concepts about the Ethereum.

2.2 Decentralized Application
A decentralized application looks very similar to that of the normal software application.

The decentralized application provides a service that creates direct interaction between the end

users and the providers. An application is categorized as a decentralized application if it satisfies
the following conditions.
1. “The Application must be completely autonomous, open source and no third party should
control the application.
2. The data and the records of the operation performed by the application should be stored
in a public blockchain.
3. The application must implement a cryptographic token system.
4. The token generated by the system should follow a standard cryptographic algorithm, as a

proof of concept (Johnston et al) .

A decentralized application can be further classified into three broad categories. If a
decentralized application has a dedicated blockchain, then it is categorized as the type 1. If the
decentralized application has a protocol and has a token system that is necessary for their function,
then it is categorized to be type 2. The type 3 decentralized application uses the type 2 protocol
and uses a separate token system to handle all the functions. Based on the above types, Ethereum
platform can be used in all the three types of decentralized application (Johnston et al.). The legal
model of developing a decentralized application is to be under open source license so that it is

open for innovation without the restriction of copyrights or patents.
2.3 Ether

Ethereum uses a separate cryptocurrency called Ether. The main use of Ether is to pay for
the computation done in the blockchain (What is Ether. n.d..). Ether can be obtained by multiple
ways. One of the best approaches for generating Ether is by mining. Once the Ethereum node is
set up the node starts generating ether by automatic mining. The Ether can also be transferred from

one account to another account or traded for real world goods. The sending and receiving of Ether

can be done easily with the help of the Ethereum wallet. Ethereum wallet provides a simple GUI
that can be used to monitor the Ether in the account (Get an Ethereum Wallet. n.d.). Some
Ethereum wallets implementations are Mist Ethereum, Ktyptokit Jaxx, Etherwall, MyEtherWaller
and Cold Storage. geth, which is Ethereum node software, has a console that provides the
sendtransaction command used to transfer ether between accounts.

Apart from the Ether to perform the computation, Ethereum has a utility value called
cryptofuel (gas). In each transaction, the sender needs to pay a small transaction fee, which is the
gas, to perform the computation. The cost of gas is determined dynamically and will depend on
the volume and the complexity of the computation to be performed. The gas price is determined

by Ethereum based on the network resources and utilization.

2.4 Mining Algorithm
Ethash is the planned proof of work algorithm for the Ethereum. The main purpose of the
mining algorithm Ethash is to generate Ether and validate the transaction. The high-level
description of the algorithm is as follows
1. “Aseedvalue is calculated for each block by scanning the header information of the block.
2. Based on the seed value a 16 MB pseudorandom number cache is generated.
3. Based on the cache value a 1 GB dataset is generated which is hashed and grows linearly
with the time.
4. The Mining operation involves grabbing the random slices from the dataset and hashing

them together. (Ethereum/wiki. n.d.)”

The main activity of the miner is to read the dataset and hash it. Based on the successful
hash operation performed by the miner the Ethereum platform will award Ether to the miner. The

dataset is automatically updated for every 30000 blocks. The average time needed for the algorithm

to generate a new block will depend directly on the difficulty threshold. Hence, it is possible to
control the time for finding the new block by manipulating the difficult threshold level. The
Ethereum dictates the difficulty level of the algorithm. The difficulty level automatically gets
adjusted that one block is generated every 15 seconds. Any node that is participating in the network
will do the process of mining automatically. Each node has an attribute called hash rate, which
will decide the speed of the mining (Ethereum/wiki. n.d.). The speed of mining operation is defined
as the number of the hash operation performed by the node.

Ethash uses a directed acyclic graph for the proof of work algorithm. The directed acyclic
graph (DAG) is generated for every 30000 blocks. The DAG contain the information about the
block heights and the other node information in it. Every node needs to generate the DAG before
starting the mining operation. Figure 1 shows the DAG generated by the geth client before the start
of the mining operation. The DAG is designed in such a way as to provide a fast verifiability within
the slow CPU environment. The CPU with higher processing power will have higher benefit in
mining when compared to the normal CPU. The communication between the external mining
application and the Ethereum platform will happen through a JSON-RPC API. The mining

operation can be carried out in private node or in a public blockchain (Ethereum/wiki. n.d.).

ece

embark_demo — geth + node jusrflocal/binfembark blockchain — 148x38

Ia53@ 18:53:52.859543 5314 ethash.go:252] Generating DAG: 19%
Ia530 18:53:57.63B664 5314 ethash.go:252] Generating DAG: 2@%
I@530 18:54:82,285389 5314 ethash.go:252] Generating DAG: 21%
I@530 18:54:86.951003 5314 ethash.go:252] Generating DAG: 22%
I@530 18:54:11.622718 5314 ethash.go:252] Generating DAG: 23%
Ia53@ 1B:54:16.453266 5314 ethash.go:252] Generating DAG: 24%
18538 1B:54:21.469978 5314 ethash.go:252] Generating DAG: 25%
18530 1B:54:26.351561 5314 ethash.go:252] Generating DAG: 26%
IB530 1B:54:31.389986 5314 ethash.go:252] Generating DAG: 27%
If530 18:54:36.493641 5314 ethash.go:252] Generating DAG: 28%
If530 18:54:41.805629 5314 ethash.go:252] Generating DAG: 20%
I@530 18:54:46.557411 5314 ethash.go:252] Generating DAG: 38%
I@530 18:54:51.867176 5314 ethash.go:252] Generating DAG: 31%
Ia530 18:54:57.515174 5314 ethash.go:252] Generating DAG: 32%
Ia53@ 18:55:@2.2503095 5314 ethash.go:252] Generating DAG: 33%
18530 1B:55:86.917644 5314 ethash.go:252] Generating DAG: 34%
18530 1B:55:11.716377 5314 ethash.go:252] Generating DAG: 35%
Ia53@ 18:55:16.506452 5314 ethash.go:252] Generating DAG: 36%
IA530 18:55:21.039@854 5314 ethash.go:252] Generating DAG: 37%
I@530 18:55:25.508800 5314 ethash.go:252] Generating DAG: 3B8%
I@530 18:55:30.170786 5314 ethash.go:252] Generating DAG: 3%
I@530 18:55:34.564200 5314 ethash.go:252] Generating DAG: 4@%
Ia53@ 18:55:39.118819 5314 ethash.go:252] Generating DAG: 41%
18538 1B:55:43.727386 5314 ethash.go:252] Generating DAG: 42%
18530 1B:55:48.3B0064 5314 ethash.go:252] Generating DAG: 43%
IBe530 1B:55:52.909301 5314 ethash.go:252] Generating DAG: 44%
Ia53@ 18:55:57.548564 5314 ethash.go:252] Generating DAG: 45%
Ia530 18:56:82.167187 5314 ethash.go:252] Generating DAG: 46%
I@530 18:56:86.8457096 5314 ethash.go:252] Generating DAG: 47%
I@530 18:56:11.4095607 5314 ethash.go:252] Generating DAG: 4B8%
Ia530 18:56:16.239055 5314 ethash.go:252] Generating DAG: 49%
Ia53@ 1B8:56:21.105440 5314 ethash.go:252] Generating DAG: 5@8%
18530 1B:56:26.976376 5314 ethash.go:252] Generating DAG: 51%
18530 1B:56:32.901524 5314 ethash.go:252] Generating DAG: 52%
IB530 1B:56:37.861454 5314 ethash.go:252] Generating DAG: 53%
Ia530 18:56:42.659257 5314 ethash.go:252] Generating DAG: 54%
18530 18:56:47.677579 5314 ethash.go:252] Generating DAG: 55%

Figure 1 Generation of DAG before the start of the mining operation

2.5 Smart Contracts

The Contract is the collection of code and the data that resides at the specific address on
the Ethereum blockchain. A contract can pass messages between two different contracts and can
perform turing complete computation. The contract that lives on the block chain will have
Ethereum specific byte code called as Ethereum Virtual machine (EVM) byte code.

The contract can be written with the help of high-level languages such as solidity, serpent,
LLL, and mutan. In this project, we develop the smart contract with the help of the solidity. The
main reason for selection of solidity is that it provides an online compiler and the development
methodologies are well documented. The solidity provides features and syntax similar to that of
the modern high-level programming languages like Java and C++. The solidity provides datatypes
such state variables, function, function modifiers, events, struct, and enum. The solidity provides
the features of inheritance which enable contracts to inherit functions from one contract to another.

Table 1 overviews the features of solidity.

10

Table 1 Basic set of data types provided by solidity

Type Description
State variable A simple variable that is used to store permanent information
inside the contract
Function An executable unit of code written inside the smart contract that

can be called from outside of the program

Function modifier A function modifiers can be used to amend the semantics of the
function.
Events An event is the special type that is used to trigger a function when

a condition is met.

Struct Struct is custom defined datatype that is used to combine a
multiple number of a variable into one single type.

Enum An enum datatype holds a multiple number of values that can
enclose a multiple number of a finite set of values.

The deployment of the smart contract on the Ethereum platform will be discussed in

Chapter 3 in detail.

2.6 Ethereum Transaction

In Ethereum a transaction is nothing but a signed data package that is sent to the external
account (Ethereum/wiki. n.d.). The transaction parameters from the receipt of the message,
signature that identifies the sender, the amount of ether transferred from the sender to receiver, an
optional data field, start gas and gas price. The start gas price will decide amount of computation
needed to perform the transaction. The gas price will represent the current gas value of the
Ethereum platform. A contract will have the capacity to send message to another contract that is
live on the blockchain. In a nutshell, an interaction between the Ethereum accounts is called a
transaction and the interaction between the contract is called as the message.
In Ethereum all the state information is stored in the account, which is stored on the blockchain.
The user needs to create an account before deploying contract in Ethereum. Thus, each of the smart

11

contracts deployed in the Ethereum is linked to an account. An account is a 20-byte address and
contains the information such as Ether balance and the contract code.
An Ethereum account will contain four fields

1. Nonce - A counter variable that makes sure the each transaction is processed once.

2. Ether balance - The amount of Ether available in the account.
3. Contract code — The contract information deployed by the account.

4. Account Storage — empty by default.

In Ethereum the contract can be accessed with the help of the account information and the contract

code that is linked along with it.

2.7 Ethereum State Transition Function

In Ethereum all the transaction that happens between the accounts needs to validate before
it gets committed to the block. The Ethereum state transition function can be defined as
APPLY (S, TX) -> S~
Where S is the initial state, TX is the transaction and the S’ is the state change after the
transaction. When a state has been changed from S to S’ the following conditions need to satisfy
to commit the transaction (Ethereum/wiki. n.d.).
1. “The Transaction should be well formed. The signature should be valid, and the nonce
matches the nonce in the sender’s account. If the signature is not valid then return an error.
2. The transaction fee is calculated using the startgas and gasprice. If the sender does not
have the proper funds for the transaction fees then return an error.
Computation fees = startgas price*gasprice
When the sender does not have the sufficient funds in their account to pay for the

computation the transaction is invalidated.

12

3.

Transfer of the transactional value is effected from the sender to the receiving account. If

the transfer fails, then revert the transaction (Ethereum/wiki. n.d.) .

When the transfer of the transaction value to the receiving account is completed, the sender

pays the gas consumed to the miners. In Ethereum all transactions are validated and stored in the

transaction list. If there is any illegal transaction, then the platform will revert the state back to its

previous state and nullifies all the transaction that had happened later (Ethereum/wiki. n.d.). The

nullified transaction is not added to the blockchain. The only difference between the Ethereum

blockchain and the bitcoin blockchain is that the Ethereum blockchain will store the recent

transactional state and the transaction list.

2.8 Block Validation

The Ethereum blockchain will contain the most recent state and the copy of the transaction

list. Each block will contain the block number and the difficulty threshold value (Ethereum/wiki.

n.d.). The basic block validation algorithm is as follows

1.

2.

“Check if there is a previous block exist and it is a valid block.

The time stamp on the previous block should be lesser than the new block that is created.
The block number, difficulty threshold, transaction root, uncle root, and gas limit of the
previous block are valid.

Check the proof of work algorithm is valid on the block.

Check the root of the tree is valid.”

If the above conditions are validated, then the block is appended into the chain. In Ethereum

all the block information is stored in the tree format called as patricia tries (Ethereum/wiki. n.d.).

A patricia tree is a modified version of the merkel tree which is used to store the blockchain

information.

13

2.9 Merkel Patricia Tries
The data structure that is used to store the information in the Ethereum platform is called
merkel patricia trie (Ethereum/wiki. n.d.). A merkel patricia trie is a modified version of a radix
tree and introduces a couple of modification to boost the performance. In Ethereum the following
modification is made to the merkel patricia trie to boost the performance.
1. All the node information is hashed and the reference to the node is done based on the hash
value.
2. Several node types are introduced to store the information. The types of leaf nodes include

empty node, standard leaf node and extension node.

Since the root node is the fingerprint of the entire data, a simple lookup can be implemented
to retrieve the information from the tree. Thus making the patricia trie as the optimal data structure

to store and retrieve the information in the blockchain.

2.10 Universal Business Language

The Universal Business Language (UBL) defines a royalty-free library of XML documents
that supports the standard business process (McGrath, T., Holman, K., & Bosak, J. n.d.). UBL is
owned by OASIS, a non-profit organization dedicated to the open development of public XML
standards. The international and domestic supply chains such as procurement, purchasing,
transport, and other supply chain management functions are described with the help of UBL.

UBL provides a language that allows the different business application to exchange
information using a common format. The XML syntax provides an easy approach for the software
developers to migrate from different business standard formats. The royalty free nature provided
by UBL made the companies make profit easily. UBL provides an entry point for small and

medium sized business to move into electronic format. One of the best aspects of the UBL is that

14

the design can be customized to meet the requirements of the individual organization. The UBL
schemas are modular, reusable and extended from the standard XML.

Several European public procurement frameworks have accepted UBL and all the major
European Union countries have implemented UBL in their government agencies. The European
common framework had accepted the UBL for their transport and logistics domain. Beyond the
scope of the supply chain, UBL can be configured to suit any industry or business. Since UBL is
available with open access there is no registration or approvals are required. In this project we
will implement business processes specified by UBL in Tendering, Catalogue, Quotation,
Ordering and Billing. We transform the use cases into a smart contract and then deploy. The

detailed description about the implementation is discussed in the chapter 3.

15

Chapter 3 - Software Implementation of UBL use cases

In this chapter, we will discuss the implementation steps that are involved in the
development of the UBL uses cases. We will review the design pattern used in smart contracts,
development framework and the methods involved in converting the smart contract into a complete
decentralized application. The UBL use cases that are implemented in this project are Tendering,
Catalogue, Quotation, Ordering and Billing operations. In the selected use case the Tender is the
most complex use case. This is due to the reason that the tender had operations like submission of
tender, processing the submitted tender and awarding the tender. The rest of the selected UBL use
cases are simple to implement. This section will discuss the detailed implementation of the use

cases.

3.1 Design Pattern
The state design pattern is a behavioural design pattern that implements a state machine
and will act differently when there is a state change (Design Patterns and Refactoring. n.d.). The
smart contract written in the solidity programming language can be designed in such a fashion that

it can act as a state machine. The smart contract will behave differently at certain stages.

VendingMachineState

| |

VendingDepositeState VendingStockState

Figure 2 State design pattern (adapted from https://sourcemaking.com/design_patterns/state)

16

A simple function call is written inside the smart contract that is used to trigger a state
change of a smart contract. Figure 2 is the simple example of the smart contract that follows the
state design pattern. Figure 3 is a simple state diagram that represents a smart contract. The smart

contract will act differently at different stages.

nextStage() function Call

State B

nextStage() function Call

State C

Figure 3 State design pattern

contract StateDesign {
enum Stages {
Stagel,
Stage2,
Stage3
}
Stages public stage = Stages.Stagel;
modifier atStage(Stages _stage) {
if (stage !=_stage) throw;

}

function nextStage() internal {
stage = Stages(uint(stage) + 1);

}

function stagel()

atStage(Stages.Stagel)

17

{
}

function stage2()
atStage(Stages.Stage2)

{
}

function stage3()

atStage(Stages.Stage3)

{
}
}

Figure 4 Sample code snippet for state design pattern

Figure 4 is a simple code snippet example of the state design pattern. The smart contract is
written with the help of solidity language. In the above code, enum data type holds the list of
different stages hardcoded inside it. The enum data type will be holding all the internal states that
are needed to implement our UBL use cases. The above program is hard coded with three stages
in the enum datatype. The function nextStage is used to move the smart contract stage. Each state
represented in enum will have a separate function that will be called at a different stage of the
smart contract.

The information that is provided by the UBL documents is stored inside the smart contracts
as state variables. A simple get and set method is used to store and retrieve the information from

the smart contract.

contract StoreNumber {
uint storedData;
function set(uint x) {
storedData = X;
}
function get() constant returns (uint retVal) {

return storedData;

Figure 5 Sample code snippet to store single variable in the smart contract

18

Figure 5 represents a simple code snippet that can be used to store one single variable in
the blockchain. The storeData is a state variable that can be used to store information in the
blockchain. The set and get method can be used to access the information of the state variable from
outside of the smart contract.

Once the contract is deployed in the blockchain any decentralized application can access
the smart contract with the address location where the contract is deployed. The deployment of the
smart contract can be done manually or can be assisted through frameworks such as Embark or
Truffle. We describe the manual deployment and then deployment through Embark framework
that was used in this project. For each one, we assume that the Ethereum framework has already
been downloaded and installed and also that an Ethereum node has been created using the geth

client.

3.2 Manual Contract Deployment

Deploying the smart contract in the block chain is one of the important steps in developing
the Ethereum platform. The smart contract can be deployed manually or automatically with the
help of any framework. In this section, we will discuss the manual deployment.

Once the smart contract is created, perhaps using a simple text editor, it needs to be
compiled using the online solidity compiler, which generates the byte code. The byte code that is
generated is then loaded into the Ethereum platform. Currently, there is only one compiler
available that is on ethereum.github.io. The compiler generates a load file that contains the byte

code with pre-fix and post-fix javascript instruction.

19

Decentralized application
software stack

HTML /CSS

Web3 API Layer

Contract

Ethereum

Figure 6 Software Stack

The loader, invoked by the geth client command loadscript, is used to load the byte code
on the Ethereum node on the blockchain at a particular address. The delay in contract deployment
will take time depending on the processing power of the Ethereum node. Once the loadscript

operation is successful the geth client will return the address of the contract deployment.

>loadScript(“<local path to the .js>”);
>Contract mined! address: 0xdaa24d02bad7e9d6a80106db164bad9399a0423e

Figure 7 smart contract with loadscript command

The contract that is deployed in the Ethereum node can be accessed with the help of Web3
API layer. Figure 6 represents the software stack used to develop a decentralized application, in
which the Ethereum node will be acting as the base layer. The smart contract will be deployed on
the top of the Ethereum node. Web3 API layer will act as an interface between the smart contract
and the front end. The front end of the application can be designed with the help of modern web

development frameworks (e.g HTMLS5, Java, and others).

3.3 Contract Development and Deployment with Frameworks

To simplify the development and deployment of smart contracts, frameworks was

developed, such as Truffle and Embark. Embark is the framework that is used in this project to

20

develop and deploy the decentralized application in the Ethereum platform. The Embark
framework takes care of the background activity that is needed for the contract deployment. Figure

8 represents the file structure of the Embark file structure.

app/
| contracts/
| html/
| css/
| s/
config/
| blockchain.yml
| contracts.yml
| server.yml
spec/
| contracts/
Figure 8 Embark file structure
The contracts are written in the contract folder and are stored as files with solc extension.
The front-end code is placed in the html and css directory. The Web3 API javascript binding
between the front-end and the Ethereum node are placed in the js directory as simple javascript
files. Embark framework will take care of the deployed contract and will make the use of the
deployed contract when there is a need for the contract in the application.
The config directory will contain yml files that are used configure the setting of the project.
The three major yml files are blockchain.yml, contracts.yml and server.yml. The blockchain.yml
file is used to specify the configuration of the Ethereum node. The contracts.yml file will have the
specification of the names of the contract, gas limit and the gas price needed for the contract to be
deployed in the project. The contracts.yml file will be automatically edited by the Embark

framework when there is a change made in the contract file. The server.yml file will contain the

host address and the port number where the project is deployed. Apart from the configuration

21

embark is quite flexible and allows custom file configuration which can be used to deploy any
application written in embark to be deployed in the server.

The deployed application can be accessed with the help of the internet thus making the
decentralized application completely available to everyone. A user accessing the decentralized
application does not need to have a geth client. In this project, we use the embark framework to

develop the UBL use cases and test its performance.

3.4 Overview of UBL use cases of the Project

Each UBL document, an XML file, may be used in the different business processes and for
the different purposes. There are many UBL documents defined that are used by the various use
cases. One document may be used for many use cases, and a use case may use many documents.
We only implement documents that are required for the selected use cases. Our selected use cases
are listed in the subsequent sections. The Tender use case is the most complex and its business
logic includes the process such as submission of the tender and awarding of the tender. The rest of

the use cases are simple.

3.4.1 Tendering:

Tender is the process in which an organization, such as government or financial entity,
invites bids for a project to be completed within a finite set of the deadline (Tender Definition |
Investopedia. 2003). Figure 11 explains the list of steps/stages that are carried out in the tender
use case. The process of Tendering can be subdivided into contract information preparation,
contract information notification, the invitation of tender, submission of qualification information,
submission of tenders and awarding of tenders (Universal Business Language Version 2.1. n.d.).

In our project, we implement submission of tenders and the awarding of tenders. In the

submission of tenders, the tenderer needs to formally submit a tender document to the contracting

22

authority. Once the submission is completed the contracting authority will respond back with a

receipt. Figure 9 shows the submission of tenders.

TENDERER CONTRACTING AUTHORITY

L
v

Prepare tender documents

(Submit tender documents)——) Tender —)(Receive tender documents)

| |

Tender Submit tender
Receipt receipt

Receive receipt

Figure 9 Submission of Tender
(Adapted from http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.1-Tender-

SubmissionOfTenders.png)

The Tender document contains information such as UBL Version Identifier, Customization
Identifier, Profile Identifier, Profile Execution Identifier, Identifier, Indicator, UUID, Tender Type
Code, Contract Folder Identifier, Issue Date, Issue Time, Contract Name, Note, Period, Document
Reference, Signature, Party, Document Reference, Party, Contracting Party, Customer Party and
Tendered Project. The contracting authority will issue the tender receipt to the tenderer. The

important variable to the tender receipt would be the issue date and the issue time.

23

TENDERER CONTRACTING AUTHORITY
C Prepare awarding notification)
Unawarded ‘L
Notification [
(Receive notiﬁcation){ 1 \ Send awarding notification
Awarded

% Notification

Figure 10 Tender notification

(Adapted from http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.1-Tender-
AwardNotification.png)

The contracting authority notifies all the tenderers about their tender status. The outcome
of the tender is success or failure. The successful tenderer gets the awarded notification and the
failure to win the tender would get the un-awarded notification. Both the awarded and un-awarded
notification will have the same set of variables. The only difference would be that the awarded

notification document will contain the signature variable added along with it.

Prepare Notify > Receive > Evaluate > Award >
Co
ition

Contracting
Authority Prior information Notice | contract Notice

Publication of
Publication of Notices Contract Award
Notice

Publication
Body

ntract Award Notice
it) Tenderer Qualification | Awarded Natification
slffer Tenders Tender Receipt Response Unawarded Natification

Tender
Tenderer Qualification

% Receive
Create Submit
Register Call for Tender Tender

Tenders

Economic
Operator

Figure 11 Overview of Tender use case

(Adapted from http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.1-Tender-

TenderingProcess.png)

24

http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.1-Tender-TenderingProcess.png
http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.1-Tender-TenderingProcess.png

Submit Tender | Contractor

Tender Qualification
UBL Version Id
CustomizationID
Profileld
ProfileExecutionID
D
CopyIndicator
UUID
ContractFolderID
Issue Time
Note
Version Id
Previous VersionID
Signature

TenderPartyQualification

ContractingParty
Evidence

AdditionalDocumentReference

Tender

Tender Submission

Submit

Figure 12 Tender Submission form

The Tender uses case implementation is divided into two functionalities. The first

functionality is for the tenderer to submit the tender information to the contractor. The second

functionality enables the contractor to retrieve the tender submission and announce the winner of

the tender. Figure 12 shows the form that is used to submit the tender information to the contractor.

Tenderer

Submission of
Tender

s Retrive Tender
Information

Contract Authority

_

25

Figure 13: UML diagram of implemented tender use case

Tender

Submit Tender Contracter

Retrive Tender Information

The tender information
Retrive

Enter the Tender Id to award the tender and generate tender reciepts

Finalize Tender

Figure 13 Contractor Portal
The contractor can retrieve the specific tender information, which has been submitted,
using the tender ID. The contractor can analyze the submitted tender information and award the

tender. Figure 13 is the contractor portal that is used to retrieve and award the tender information.

3.4.2 Catalog:

A catalog is used to store all the transaction records carried out over a period of time. In
the contract, the catalog will be storing all the transactional information that are carried out by
other business process.

The business processes that are linked to the catalog are catalog request, application
response, catalog item specification, catalog pricing update and catalog deletion. In our project,
the catalog is implemented as a simple logging tool that will record all the information that are
made by the other contracts. The information that is stored in the catalog is the information that is
carried out by the other business use cases.

In this project, the catalog is implemented as a logger that will record all the transaction

that are taking place in the network.

26

3.4.3 Quotation:

The quotation is the standard business process whose purpose is to invite suppliers to bid
on a specific product or service. The information about the product or service is written as a smart
contract and deployed on the Ethereum platform.

A simple call to the contract is used to fetch the information from the contract. A timed
transition function is written inside the quotation which will make the quotation expire after a
certain period of time. The customer party can request for the quotation when it is available in the
block chain. When the time expires the quotation will be automatically destroyed from the block

chain.

Originator Customer Party Seller Supplier Party

: Request for Receive r t f
Send request for Quotation i eceive request for
Quotation quotation \

Quotati - (Send quotation

Receive quotation

Figure 14 Quotation

(Adapted from http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.0-
SourcingBuyerlnitiatedProcess.png)

The quotation use case contains only one document associated with it which is the request
for quotation (Universal Business Language Version 2.1. n.d.). The customer party can request a

quotation for a product or a service to the seller.

27

http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.0-SourcingBuyerInitiatedProcess.png
http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.0-SourcingBuyerInitiatedProcess.png

Quotation

Enter the Id number to request for the quotation for the product (1-99)
1

Submit Request

UBL Versian ID 2.1
Customization Identifier 1
Profile Identifier 1
Profile Execution Identifier | 1
Product Name Sample Product
Issue Date 30-Jun-2016
Submission Date 15-July-2016
Delivery CoD
Currency Dollar

Figure 15 Quotation Submission form

The list of variable associated with the quotation are UBL Version Identifier, Customization
Identifier, Profile Identifier, Profile Execution Identifier, Identifier, Indicator, UUID, Issue Date,
Issue Time, Submission Due Date, Note, Currency Code, Line Count, Period, Document
Reference, Signature, Customer Party, Supplier Party, Delivery, Delivery Terms, Country,
Contract and Request For Quotation Line

In the implementation of the quotation, the customer party and the seller party will have a
different screen. The seller party can create information about the product or service. Based on the
product or service that has been created by the seller the customer can request for a quotation and
can view the details of the product or service. The quotation is extended to the ordering and billing
and will be discussed in the subsequent sections.

3.4.4 Ordering:

The ordering is the collaboration that creates a contractual obligation between the seller

and the buyer. Ordering in the UBL can be subdivided into order request, order response, order

change and order cancellation. In this project, we implement in the steps carried out in the order

28

request. In the order request, the buyer party will be placing an order to the seller party. When the
order is received, the seller party can perform any operation on the order request.

The order request will have more than fifty different variables associated with it. The
following are the variables that are associated with the order request are BuyerCustomerParty,
SellerSupplierParty, TaxTotal, AnticipatedMonetaryTotal and OrderLine (Universal Business

Language Version 2.1. n.d.).

Quotation
Tatan tha TA cemalene #a anmsnnt Fan thn mmataelnn Fao ela e dusae F1 OO
This page says:
Shall | place the order
Prevent this page from creating additional dialogs.
Cancel OK

Profile Identifier 1
Profile Execution Identifier | 1
Product Name Sample Product
Issue Date 30-Jun-2016
Submission Date 15-July-2016
Delivery COoD
Currency Dollar

Place Order

Figure 16 Order Submission
Once the order has been placed to the seller. The seller can accept or reject an order. The
response of the order can be expressed using the order response document. In this project, we will
be implementing the order request. The seller responds back to the buyer with the order response.
In this project ordering use case is implemented along with the quotation. Once the buyer
requests the quotation from the seller, the buyer will be given an option to order the product or

service.

29

3.4.5 Billing:

Billing is the process in which a request is made for the payment of the goods or service
that has been ordered or received. In the Billing use case, we will do the implementation of the
statement process that is carried out between the buyer and the seller (Universal Business
Language Version 2.1. n.d.). The documents that are linked to the billing are Invoice, credit note,

debit note, and application response.

Place Order
Reguest Bill

The Bill has been generated

UBL Version ID 2.1
Customization Identifier 1
Prafile Identifier 1
Profile Execution Identifier | 1
Product Name Sample Product
Issue Date 30-Jun-2016
Submission Date 15-July-2016
Delivery COoD
Currency Daollar

Figure 17 Request Billing
The process of billing can be subdivided into traditional billing and self-billing. Each
billing operation can be done separately using the credit or debit note. The billing operation, when
carried out using the credit and the debit are completely different. The UBL document specifies a
separate operation under billing called as a remainder. The remainder operation is carried out when

the buyer party has pending payments. In our project, we implement in the statement operation

30

which is used to get the status of the billing information. Figure 12 represents the UBL billing

procedure.

Accounting Customer Accounting Supplier

Generate Statement)

(Receive Statement)% Statement <=

:

(Adapted from http://docs.oasis-open.org/ubl/os-UBL-2.1/art/UBL-2.0-
ReportStateofAccountsProcess.png)

7)

Figure 18 UBL Billing Statement processing

In the billing use case is an extended version of the ordering. Once the order request is completed,

the bill is automatically generated to the customer.

3.5 Summary
In this project, we implemented the business use cases related to Tender, Quotation,
Ordering, Billing and Catalog. A simple prototype is developed for the each business use case.
The implemented prototype can be used to examine the suitability of deployment of business logic
expressed in UBL in Ethereum. Our selected subset of the use case from reference ensured that
our selected set had one of the most sophisticated and complex cases. In our selected use cases the
Tender is the most complex use cases to be implemented. Thus we conclude that Ethereum is a

suitable platform for the implementation of UBL use cases.

31

Chapter 4 - Performance and Scalability
In this chapter, we will review the performance and scalability of the Ethereum as a
platform. Ethereum suffers from the flaw that every transaction needs to be processed by every
node in the network. This affects the performance and the scalability aspect of the Ethereum
platform. This chapter is designed in such a way that we will examine the factors that affect the

performance and scalability of the Ethereum.

4.1 Performance Parameters
An Ethereum node that is participating in the mining operation is expected to generate
some amount of ether. The generated ether is used to run computation tasks or validated
transactions that are happening in the blockchain. The two important parameters that affect the
performance of the Ethereum are the hash rate used in the mining algorithm and the difficulty
threshold value used in the proof of work algorithm (Ethereum/wiki. n.d.). In this subsection, we

will review the parameters that affect the performance of the Ethereum platform.

4.1.1 Hashrate
When a node participates in the network and performs the mining operation the node will
automatically validate the transactions in the blocks that are newly created. The ether generated
by the mining operation that is done in the node is controlled by the parameter called as hash rate.
The hash rate is the number of nonces tried per second normalized by the hash rate of the network.
The hash rate will determine the number of transactions that need to be validated by the node. The

average hash rate increases as the number of nodes participating in the network increases.

4.1.2 Difficulty Threshold
In Ethereum miners are responsible for checking blocks for validity and then forwarding

them onto the blockchain. Miners use the Etash algorithm for that purpose. The difficulty

32

threshold value will decide the amount of time needed for the new block to get finalized. The
difficulty threshold value is controlled by the Ethereum platform and, the current Ethereum
platform generates a new block for every 12 seconds (What is Ether. n.d.). Once the new block is

generated the newly created block is validated by the nodes participating in the network.

4.1.3 Hardware

The mining operation performed in the node will directly depend on the hardware. The
mining operation can be done in both CPU and GPU. The Ethash algorithm is designed in such a
way that it can even run on a slow CPU environment. The number of the hash operation performed
by the Ethereum will directly depend on the memory bandwidth of the hardware. The memory
bandwidth is defined as the rate at which the data can be stored in the hardware memory. The
hardware with higher memory bandwidth will have a higher advantage compared to hardware with
slower memory bandwidth. The performance of the GPU has by default more advantage when
compared to the node which is run on the CPU. The mining operation is started only after
generating the DAG. When the node does not have the capacity to generate the DAG the mining
operation will not start. Thus hardware disk space is also another parameter that affects the
performance of the Ethereum.

Crypto Junction (Cryptojunctioncom, 2016) conducted a detailed study on the analysis of
different GPUs in running the Ethash algorithm. Their study clearly showed that the mining
algorithm Ethash had a different performance rate based on the hardware the algorithm was tested.
This clearly showed that the hardware is an important parameter that affected the performance of
the Ethereum. Crypto compare (Cryptocomparecom, 2016) has provided a simple guide to select

the hardware to perform the mining operation.

33

4.2 Transactions Per Second
In Ethereum all the transactions that are carried out in the network need to be validated
before it gets finalized. (Etherchainorg, 2016) Ether chain reports all the statistical information
that is happening in the live Ethereum blockchain. The current Transactions Per Second (TPS)

lies between the 0.03 and 0.81.

FAVRLS Ve L VFA Y VAT V)

Transactions per second
TS 046

1" 1118 2 215 31 318 4 4118 5 516 B 616
TPS

Figure 19 Transactions per second reported by Ethereum 10
Since the transactions are not validated concurrently delay time of the transaction getting
approved will increase as the number of nodes increases. If the delay time increases, then the
application that is developed on top of Ethereum will have more inconvenience (Ethereumorg,

2014).

“Transactions comes in_from different peers, in no particular order, since there is no centrally managed
queue. In addition, at average intervals of between 12 seconds (Ethereum) and 10 minutes (bitcoin), a new block
comes in, confirming a set of transactions in a specific order. A node will probably have seen most of a block’s
transactions already, but some may be new. Either way, the order of the transactions in the block is unlikely to
reflect the order in which they arrived individually. And since the order of transactions might affect the outcome,
this means transactions cannot be processed until their order in the blockchain is confirmed. ”

In Ethereum the transaction is not validated concurrently by the node this due to the reason

that the each transaction depend on each other (Multichaincom, 2016). A set of transactions can

34

be processed concurrently if the transactions are atomic and do not depend on each other. In
Ethereum transaction comes from different peers in no particular order and does not have a
centralized queue system to manage the order of transactions. This causes lots of problems because
if each node processes the transaction in a different order, then the end result will be different for
each transaction.

In Ethereum a transaction is only valid if it is committed into the block and added to the
blockchain. On average, the time taken for the Ethereum to create a new block and confirm a set
of transactions is 12 seconds (Ethereumorg, 2014). The transaction cannot be processed until their
order in the blockchain is confirmed. The current implementation of the Ethereum does not process
the unconfirmed transaction. If the node wants to process a new transaction, then the node needs
to reference the newly created block and make the update to its current transaction. Thus making
the concurrent implementation in the Ethereum an impossible task to implement. In a nutshell, an
individual node needs to wait for 12 seconds before seeing the result of its own transaction. As
(Multichaincom, 2016) Vitalik Buterin stated that the key problem of the Ethereum and the
decentralized application is the latency.

Proof of Stake is an alternative protocol that has been proposed to replace the proof of work
algorithm. The proof of work algorithm is based on the mining method carried out by the nodes
and the proof of stake algorithm is based on the amount of stake (ether) that miners hold on the
network. Proof of Stake does not require complex computation to be carried out. The consensus is
achieved by placing bets and thus by removing the heavy computation involved in the proof of
work, the barrier to the consensus is lowered so that a new block can be formed very easily.
Ethereum had proposed to implement the proof of stake algorithm in their casper release.

The proof of stake algorithm on Ethereum has the following working principles

(Ethereumorg, 2015)

35

1) When the new block has been created the validators in the network will place a small security
deposit behind the block. When the largest percentage of the security deposit is placed on a
block, then the block becomes a valid block.

2) The concept of placing the security deposit behind the block extends to the concept of betting.
A block gets approved based on the number of bets placed by the validators in the network. If
a block gets 2/3" of bets placed by the validators then the block gets approved and added to the
chain.

3) Once a block gets approved there is another voting process is taken place to decide the new
block is added to the network or not. The voting process will involve 2/3™ of the validators

need to approve the block to be added.

Proof of Stake algorithm has reduced the huge amount of computation power since the nodes that
have the stake in the network will take care of the validation process. The implementation of the
Proof of Stake algorithm is one of the best solutions that can be provided for the scalability and

performance issues faced by the Ethereum.

4.3 Scalability
In Ethereum scalability is the most important factor that needs to be addressed. The current
blockchain size of the Ethereum is over 16 GB size (Cryptomining-blogcom, 2016). The node will
require the entire chain to participate in the mining operation. When the number of applications
and the users interacting the blockchain increases, then the size of the blockchain will increase.
The following list of problems arises when the chain size is very large
1. When the block chain size becomes very large (e.g., 100 TB), very few nodes will have the
capacity to store such a large file size. This means that very few nodes will have the

capacity to mine.

36

2. Ifthe block chain size is very large, the time taken for the mining algorithm to generate the
DAG will take a very long time. Hence this will affect the initialization of mining

operations in the node.

The following are some of the proposed methods to deal with the scalability issues related to the
Ethereum.

Ethereum white paper (Ethereum/wiki. n.d.) proposed that creating a lower bound on the
number of mining nodes will solve the problem of scalability. If the number of mining nodes in
the network is decreased, then the validation time taken for the nodes will also decrease. Hence
allowing a fewer number of nodes to perform the mining operation will provide a naive solution
to solve the scalability issue. Though this solution contradicts the previous assumption that all the
node participating in the network need to be a mining node. But reducing the number of nodes
performing the mining operation can reduce the transaction approval time and improve the
performance.

Vitalik Buterin proposed an alternative technique for achieving scalability in Ethereum
(Buterin, 2015). The scalability can be achieved by splitting the transaction into small portions of
the block chain state. If the transaction collection is valid then the group of transactions is added
to the block. The proposed method validated transaction in groups rather than the validating the
transaction individually.

Scalability of Ethereum is currently in its nascent stage, So we need to wait for a decision
from the Ethereum foundation to make changes in the future versions of the Ethereum to solve the

scalability issues.

37

4.4 Data Structure
The data structure used to store and retrieve the information is also a factor that affects the
performance and scalability of the Ethereum platform. In Ethereum a merkel patricia tries are used
to store and retrieve the information from the chain. The merkel patricia tries is a modified version

of the radix tree data structure.

1l romane

2 romanus

32 romulus >

4 rubens

5 ruber

& rubicon

7 @ L]

b

® @

== IS
@ @ @%

Figure 20: Radix tree (Adapted from http://www.birdland.co.jp/wordpress/wp-
content/uploads/2015/07/320px-Patricia_trie.svg_.png.)

Though the radix tree is efficient in storing and retrieving the string information. The
Merkel Patricia tries make the following changes to store the blockchain information. All the
information stored in the node is hashed and the information is referenced by the hash value.
Merkel Patricia tries adds different types of nodes such as empty node, extension node, and
standard leaf node. The idea of a different node type is to optimize search and retrieve operation
carried out in the tries. Figure 20 is a simple example of the radix tree and information stored in it.
The simple lookup function will traverse the tree and produce the result. Hence the same concept

of the radix tree is used in the Patricia tries efficiency of the insert, lookup, and the delete operation

38

can be done in O (log N) time (Ethereum, 2016). Although the Ethereum project is open source,

the source code for the tree manipulation has not been released and thus we are unable to confirm

whether the statement, that the tree operations are O (log N), is for the average or for the worst

case — and we were not able to confirm this in the literature.

4.5 Future Direction

Though Ethereum foundation has the complete control of the changes that needs to

be made in the Ethereum protocol, the Ethereum yellow paper has proposed the following changes

to the Ethereum blockchain (wood, G. 2016).

1.

“The modification in the validation algorithm provides a solution to the scalability of the
Ethereum platform. The nodes participating in the mining operation will not be forced to
store all the state.

Replacing Proof of Work algorithm with the Proof of Stake in the future releases of the
Ethereum will have a huge impact on the performance and the scalability.

The nodes would be given an age and the validation should be done by the nodes after it
attains a certain particular age.

When a node wants to participate in the mining operation. The node does not need the
entire chain to participate in the mining.

A compressed archive of the entire chain is maintained so that If a node wants to access
the chain can access the archive and retrieve the information from it.

A lightweight chain can be introduced to perform the computation and establish the nodes.
A priority set is created for the nodes so that certain node will have the higher verification

rate when compared to the other nodes that participating in the mining operation.

39

8. Blockchain compression can be used to remove the nodes that have not sent or received

any transaction for a considerable period of time.”

The changes that we propose for the Ethereum platform in the future releases are as follows:

1) A standard programming language needs to be adopted for the Ethereum platform. Currently,
Ethereum supports multiple programming languages for the development of the smart contract.
Thus, by adopting one language for the development will encourage the developers to think in a
unified way.

2) Ethereum foundation needs to work on better development tools to attract more developers into
developing the decentralized application. The Ethereum foundation provides Ethereum
Integrated Development Environment, which is not easy to use to develop Decentralized
applications.

3) Ethereum needs to support special data types for date and floating point values.

4) Ethereum platform needs to provide basic library functions for string and file handling.

Though the current Ethereum blockchain has performance and scalability, issues related to it. But

in the future with continuous improvements, the issues can be tackled

40

Chapter 5 - Conclusion

Ethereum protocol was originally developed as an upgraded version of the existing
cryptocurrencies. Beyond the transfer of value, Ethereum provides a framework to build the
decentralized application. Ethereum in the future will provide a decentralized computation
environment where the developer can set up independent Ethereum nodes to develop and deploy
the decentralized application. Ethereum is currently an open-ended project, which means that
based on the requirements of applications, new features will be added to the platform. Current
financial and nonfinancial organization are exploring the Ethereum capacity to implement their
products and services.

In this project, we explored whether UBL use cases can be ported to the Ethereum platform.
The UBL use cases were developed by OASIS (OASIS, 2016), which is a nonprofit consortium
that drives the development, convergence and adoption of open standards for the global
information society. As the OASIS standard includes 73 use cases, we selected a small subset,
while ensuring that it contained one of the most complex cases, for implementation using
Ethereum. We created a template to be followed for use cases in Ethereum and then used it to
implement the selected use cases- thus providing a proof of concept that the OASIS standard UBL
use cases can be implemented in Ethereum. Along with the implementation of the UBL use cases,
we reviewed the performance and scalability of the Ethereum platform.

As the current version of the Ethereum platform has issues related to performance and
scalability, the future Ethereum releases need to address them and fix the drawbacks. If the
Ethereum continuously evolves as time progresses, then it is likely that it will be the future of
building the decentralized application. If Ethereum gets more amount of funding and support from

the large business corporations then it is going to be a force to reckon with.

41

5.2 Future work
Currently, Ethereum is completely open-ended and the technology is not stable. There are
lot of modifications that need to be done to overcome the limitation of performance and scalability
of the platform. The changes in the future versions of the Ethereum platform are done by the
Ethereum foundation. Ethereum is currently in its nascent stage and we need to wait for the future

releases of the platform.

42

Reference

Bitcoinit. (2016). Bitcoinit. Retrieved 27 June, 2016, from
https://en.bitcoin.it/wiki/Why_a_GPU_mines_faster_than_a CPU

Bitcoinminingcom. (2016). Bitcoinminingcom. Retrieved 27 June, 2016, from
https://www.bitcoinmining.com/ethereum-mining/

Buterin, V. (2016). Ethereum Homestead. Retrieved 4 June, 2016, from www.ethereum.org

Buterin, V. (2015). Notes on Scalable Blockchain Protocols. Retrieved 2 July, 2016, from
https://github.com/vbuterin/scalability _paper/blob/master/scalability.pdf

Cryptomining-blogcom. (2016). Cryptomining-blogcom. Retrieved 27 June, 2016, from
http://cryptomining-blog.com/tag/ethereum-blockchain-size/

Cryptojunctioncom. (2016). CryptoJunction. Retrieved 2 July, 2016, from
https://cryptojunction.com/ethereum-mining-hardware-comparison/

Cryptocomparecom. (2016). CryptoCompare. Retrieved 2 July, 2016, from
https://www.cryptocompare.com/mining/guides/how-to-choose-a-gpu

Decentralized Prediction Markets | Augur Project. (n.d.). Retrieved from https://www.augur.net/

Design Patterns and Refactoring. (n.d.). Retrieved June 27, 2016, from
https://sourcemaking.com/design_patterns/state

Ethereum. (2016). Ethereum/wiki. Retrieved August 11, 2016, from
https://github.com/ethereum/wiki/wiki/Patricia-Tree

Ethereum Project. (n.d.). Retrieved from https://www.ethereum.org/

Etash. (n.d.). Ethereum/wiki. Retrieved June 15, 2016, from
https://github.com/ethereum/wiki/wiki/Ethash

Ethereumorg. (2014). Ethereum Blog. Retrieved 2 July, 2016, from
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

Ethereumorg. (2015). Ethereum Blog. Retrieved 27 July, 2016, from
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
Etherchainorg. (2016). Etherchainorg. Retrieved 2 July, 2016, from https://etherchain.org/

Ethereum homestead documentation — Ethereum homestead 0.1 documentation. (2016).
Retrieved July 14, 2016, from http://www.ethdocs.org/en/latest/

43

Get an Ethereum Wallet. (n.d.). Retrieved June 15, 2016, from
https://www.weusecoins.com/ethereum-wallets/

Get an Ethereum Wallet. (n.d.). Retrieved June 16, 2016, from
https://www.weusecoins.com/ethereum-wallets/

Johnston, D., Yilmaz, S. O., Kandah, J., Bentenitis, N., Hashemi, F., Gross, R., Mason, S. (n.d.).
DavidJohnstonCEO/DecentralizedApplications. Retrieved June 15, 2016, from
https://github.com/DavidJohnstonCEO/DecentralizedApplications

List of highest funded crowdfunding projects - Wikipedia, the free encyclopedia. (n.d.).
Retrieved June 6, 2016, from
https://en.wikipedia.org/wiki/List_of _highest_funded_crowdfunding_projects

Multichaincom. (2016). Multichaincom. Retrieved 2 July, 2016, from
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/

Mougayar, W. (2015). The Business Imperative Behind the Ethereum Vision - Ethereum Blog.
Retrieved June 05, 2016, from https://blog.ethereum.org/2015/05/24/the-business-
imperative-behind-the-ethereum-vision/

McGrath, T., Holman, K., & Bosak, J. (n.d.). OASIS Universal Business Language (UBL) TC.
Retrieved June 16, 2016, from https://www.0asis-
open.org/committees/tc_home.php?wg_abbrev=ubl

OASIS (2016). Committee categories. Retrived July 28,2016 from https://www.oasis-open.org/

The DAO (organization) - Wikipedia, the free encyclopedia. (n.d.). Retrieved June 6, 2016, from
https://en.wikipedia.org/wiki/The_DAO (organization)

Tender Definition | Investopedia. (2003). Retrieved June 27, 2016, from
http://lwww.investopedia.com/terms/t/tender.asp

Universal Business Language Version 2.1. (n.d.). Retrieved June 27, 2016, from http://docs.oasis-
open.org/ubl/UBL-2.1.html

What is Ether. (n.d.). Retrieved June 15, 2016, from https://www.ethereum.org/ether

Wood, G. (2016). Ethereum: A secure decentralized generalized transaction ledger
homestead. Retrieved 27 June, 2016, from http://gavwood.com/paper.pdf

44

